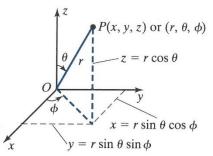
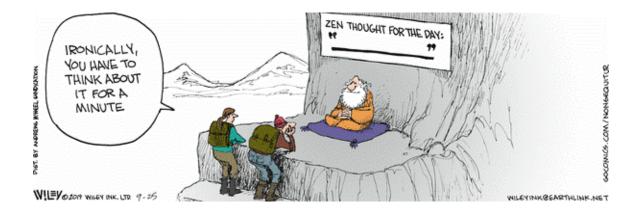
HOMEWORK SET 7: 3-D SCHRÖDINGER EQUATION I Due Monday, February 10, 2025

PROBLEMS FROM TZDII¹


1) 8.43 The probability of finding an electron in the region r > a is $\int P(r) dr$. What is the prob-

ability that a 1s electron in hydrogen would be found outside the Bohr Radius, a_B ? (Look up R_{1s} in Table 8.2, follow instructions in the footnote of the table to write the probability density, P(R), then integrate by parts. Does your answer makes sense? Make a physical argument as to why it does or does not.)

2) 8.47 a) Write down the θ equation (8.65) for the 2p states with m = ±1. Show that the solution is $\Theta(\theta) = \sin(\theta)$. This means that the complete wave functions for the 2p states with m = ±1 are


 $\psi_{\text{2,1,}\pm1} = \textbf{R}_{\text{2p}}(\textbf{r}) \textbf{sin}(\theta) \textbf{e}^{\pm i \phi}$

b) Prove that the sum of these two wave functions is the $2p_x$ wave function (times an uninteresting factor of 2) and that the difference is the $2p_y$ function (times 2i). [Hint: Rewrite $e^{\pm i\phi}$ as $\cos(\phi) \pm i\sin(\phi)$ and remember the relations for x and y in terms of r, θ , and ϕ in Fig. 8.11.]. Comment on what this means in a radial potential.

FIGURE 8.11

The spherical polar coordinates of a point P are (r, θ, ϕ) , where r is the distance OP, θ is the angle between OP and the z axis, and ϕ is the angle between the x-z plane and the vertical plane containing OP.

¹ Taylor, Zafiratos, & Dubson, Modern Physics for Scientists and Engineers, 2nd Editon, Pearson, Prentice Hall, 2004